778 research outputs found

    The H.E.S.S. multi-messenger program

    Full text link
    Based on fundamental particle physics processes like the production and subsequent decay of pions in interactions of high-energy particles, close connections exist between the acceleration sites of high-energy cosmic rays and the emission of high-energy gamma rays and high-energy neutrinos. In most cases these connections provide both spatial and temporal correlations of the different emitted particles. The combination of the complementary information provided by these messengers allows to lift ambiguities in the interpretation of the data and enables novel and highly sensitive analyses. In this contribution the H.E.S.S. multi-messenger program is introduced and described. The current core of this newly installed program is the combination of high-energy neutrinos and high-energy gamma rays. The search for gamma-ray emission following gravitational wave triggers is also discussed. Furthermore, the existing program for following triggers in the electromagnetic regime was extended by the search for gamma-ray emission from Fast Radio Bursts (FRBs). An overview over current and planned analyses is given and recent results are presented.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherland

    The origin of the reversed granulation in the solar photosphere

    Get PDF
    We study the structure and reveal the physical nature of the reversed granulation pattern in the solar photosphere by means of 3-dimensional radiative hydrodynamics simulations. We used the MURaM code to obtain a realistic model of the near-surface layers of the convection zone and the photosphere. The pattern of horizontal temperature fluctuations at the base of the photosphere consists of relatively hot granular cells bounded by the cooler intergranular downflow network. With increasing height in the photosphere, the amplitude of the temperature fluctuations diminishes. At a height of z=130-140 km in the photosphere, the pattern of horizontal temperature fluctuations reverses so that granular regions become relatively cool compared to the intergranular network. Detailed analysis of the trajectories of fluid elements through the photosphere reveal that the motion of the fluid is non-adiabatic, owing to strong radiative cooling when approaching the surface of optical depth unity followed by reheating by the radiation field from below. The temperature structure of the photosphere results from the competition between expansion of rising fluid elements and radiative heating. The former acts to lower the temperature of the fluid whereas the latter acts to increase it towards the radiative equilibrium temperature with a net entropy gain. After the fluid overturns and descends towards the convection zone, radiative energy loss again decreases the entropy of the fluid. Radiative heating and cooling of fluid elements that penetrate into the photosphere and overturn do not occur in equal amounts. The imbalance in the cumulative heating and cooling of these fluid elements is responsible for the reversal of temperature fluctuations with respect to height in the photosphere

    Simultaneous H.E.S.S. and RXTE observations of the microquasars GRS 1915+105, Circinus X-1 and V4641 Sgr

    No full text
    Microquasars, Galactic binary systems showing extended and variable radio emission, are potential gamma-ray emitters. Indications of gamma-ray transient episodes have been reported in at least two systems, Cyg X-1 and Cyg X-3. The identification of additional gamma-ray emitting microquasars is key for a better understanding of these systems. Very-high-energy gamma-ray emission from microquasars has been predicted to happen during periods of transient outbursts potentially connected with the formation of a jet-like outflow. Contemporaneous observations using the H.E.S.S. telescope array and the RXTE satellite were obtained on three microquasars: GRS 1915+105, Circinus X-1 and V4641 Sgr with the aim of detecting a broadband flaring event in the very-high-energy gamma-ray and X-ray bands. We report here on the analysis of these data for each system, including a detailed X-ray analysis assessing the location of the sources in a hardness-intensity diagram during the observations. Finally we discuss the derived upper limits on their very-high-energy gamma-ray flux

    Phospho-dependent and phospho-independent interactions of the helicase UPF1 with the NMD factors SMG5-SMG7 and SMG6

    No full text
    Nonsense-mediated mRNA decay (NMD) is a eukaryotic surveillance pathway that recognizes mRNAs with premature stop codons and targets them for rapid degradation. Evidence from previous studies has converged on UPF1 as the central NMD factor. In human cells, the SMG1 kinase phosphorylates UPF1 at the N-terminal and C-terminal tails, in turn allowing the recruitment of the NMD factors SMG5, SMG6 and SMG7. To understand the molecular mechanisms, we recapitulated these steps of NMD in vitro using purified components. We find that a short C-terminal segment of phosphorylated UPF1 containing the last two Ser-Gln motifs is recognized by the heterodimer of SMG5 and SMG7 14-3-3-like proteins. In contrast, the SMG6 14-3-3-like domain is a monomer. The crystal structure indicates that the phosphoserine binding site of the SMG6 14-3-3-like domain is similar to that of SMG5 and can mediate a weak phospho-dependent interaction with UPF1. The dominant SMG6-UPF1 interaction is mediated by a low-complexity region bordering the 14-3-3-like domain of SMG6 and by the helicase domain and C-terminal tail of UPF1. This interaction is phosphorylation independent. Our study demonstrates that SMG5-SMG7 and SMG6 exhibit different and non-overlapping modes of UPF1 recognition, thus pointing at distinguished roles in integrating the complex NMD interaction network

    On the measurement of the proton-air cross section using longitudinal shower profiles

    Full text link
    In this paper, we will discuss the prospects of deducing the proton-air cross section from fluorescence telescope measurements of extensive air showers. As it is not possible to observe the point of first interaction X1X_{\rm 1} directly, other observables closely linked to X1X_{\rm 1} must be inferred from the longitudinal profiles. This introduces a dependence on the models used to describe the shower development. The most straightforward candidate for a good correlation to X1X_{\rm 1} is the depth of shower maximum XmaxX_{\rm max}. We will discuss the sensitivity of an XmaxX_{\rm max}-based analysis on σpair\sigma_{\rm p-air} and quantify the systematic uncertainties arising from the model dependence, parameters of the reconstruction method itself and a possible non-proton contamination of the selected shower sample.Comment: 4 pages, Proceedings for ISVHECRI Weihei 200

    Magnetic flux emergence in granular convection: Radiative MHD simulations and observational signatures

    Full text link
    We study the emergence of magnetic flux from the near-surface layers of the solar convection zone into the photosphere. To model magnetic flux emergence, we carried out a set of numerical radiative magnetohydrodynamics simulations. Our simulations take into account the effects of compressibility, energy exchange via radiative transfer, and partial ionization in the equation of state. All these physical ingredients are essential for a proper treatment of the problem. Furthermore, the inclusion of radiative transfer allows us to directly compare the simulation results with actual observations of emerging flux. We find that the interaction between the magnetic flux tube and the external flow field has an important influence on the emergent morphology of the magnetic field. Depending on the initial properties of the flux tube (e.g. field strength, twist, entropy etc.), the emergence process can also modify the local granulation pattern. The emergence of magnetic flux tubes with a flux of 101910^{19} Mx disturbs the granulation and leads to the transient appearance of a dark lane, which is coincident with upflowing material. These results are consistent with observed properties of emerging magnetic flux.Comment: To appear in A&

    Magneto-convection in a sunspot umbra

    Full text link
    Results from a realistic simulation of 3D radiative magneto-convection in a strong background magnetic field corresponding to the conditions in sunspot umbrae are shown. The convective energy transport is dominated by narrow upflow plumes with adjacent downflows, which become almost field-free near the surface layers. The strong external magnetic field forces the plumes to assume a cusp-like shape in their top parts, where the upflowing plasma loses its buoyancy. The resulting bright features in intensity images correspond well (in terms of brightness, size, and lifetime) to the observed umbral dots in the central parts of sunspot umbrae. Most of the simulated umbral dots have a horizontally elongated form with a central dark lane. Above the cusp, most plumes show narrow upflow jets, which are driven by the pressure of the piled-up plasma below. The large velocities and low field strengths in the plumes are effectively screened from spectroscopic observation because the surfaces of equal optical depth are locally elevated, so that spectral lines are largely formed above the cusp. Our simulations demonstrate that nearly field-free upflow plumes and umbral dots are a natural result of convection in a strong, initially monolithic magnetic field.Comment: Accepted by Astrophysical Journal Letter
    corecore